Measuring Concentration: There are several different ways to measure and express the concentration of a solution. Molarity (Section 12.3) the term we learned earlier, refers to the concentration of a solution expressed in moles of solute per liter of solution. We also use several other units, including the following:

1. Percent by Mass $\frac{\text { mass of solute }(\mathrm{g})}{\text { mass of solution }(\mathrm{g})} \times 100 \%$
2. Percent by Volume $\frac{\text { volume of solute }(\mathrm{mL})}{\text { volume of solution }(\mathrm{mL})} \times 100 \%$
3. Mass/Volume Percent $\frac{\text { mass of solute }(\mathrm{mg})}{\text { volume of solution }(\mathrm{dL})} \times 100 \%$ (units are used in medicine)
4. Parts per million $\frac{1 \mathrm{~g} \text { of solute }}{1 \times 10^{6} \mathrm{~g} \text { of solution }}$

For this type of unit, these equivalents work for water solutions:
$1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L} \quad 1 \mathrm{ppb}=1 \mu \mathrm{~g} / \mathrm{L} \quad 1 \mathrm{ppt}=1 \mathrm{ng} / \mathrm{L}$
$\mathrm{ppm}=$ parts per million $\quad \mathrm{ppb}=$ billion $\quad \mathrm{ppt}=$ trillion
5. Molality $\frac{\text { amount of solute }(\mathrm{mol})}{\text { mass of solvent }(\mathrm{kg})}$ this unit is independent of temperature

Problems - Do work on Separate Paper. Show Dimensional Analysis.

1. Glucose is a sugar that is found abundantly in nature. What is the percent by mass of a solution made by dissolving 163 g of glucose in 755 g of water? Do you need to know the formula of glucose? Why or why not?
2. What is the mass percent sucrose in a solution obtained by mixing 225 g of an aqueous solution that is 6.25% sucrose by mass with 135 g of an aqueous solution that is 8.20% sucrose by mass?
3. Determine the volume percent of toluene in a solution made by mixing 40.0 mL toluene with 75.0 mL of benzene.
4. What is the concentration of Na^{+}, in parts per million by mass, in $0.00152 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$?
5. What is the molality of a solution prepared by dissolving 225 mg of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in 5.00 mL of ethanol (density $=0.789 \mathrm{~g} / \mathrm{mL})$
6. How many milliliters of water (density $=0.998 \mathrm{~g} / \mathrm{mL}$) are required to dissolve 25.0 g of urea $\left(\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right)$ in order to produce a solution that is $1.65 m$? (m is the abbreviation for molality)
7. Describe the process you would use in order to prepare 5.00 kg of an aqueous solution that is $8.00 \% \mathrm{NaCl}$ by mass.
8. What is the mass percent of solute when 4.12 g is dissolved in 100.0 g of water?
9. What is the volume percent of 10.00 g of acetone $(\mathrm{d}=0.789 \mathrm{~g} / \mathrm{mL})$ in 1.55 L of an acetone-water solution?
10. On average, glucose makes up about 0.10% of human blood, by mass. What is the approximation concentration of glucose in blood in milligrams per deciliter? (You have to assume something about blood).
11. Convert $0.0035 \% \mathrm{NaCl}$ by mass into parts per million of NaCl .
12. Convert $2.4 \mathrm{ppm} \mathrm{F}^{-}$into molarity of fluoride ion.
13. Calculate the molality of a solution prepared by dissolving 125 mL of pure methanol (density $=0.791$ g / mL) into 275 g of ethanol.

Concentrations Worksheet KEY

1. 163 g glucose $/ 918 \mathrm{~g}$ soln $\mathrm{x} 100 \%=17.8 \%$ glucose
2.

$\frac{[(6.25 \% \times 225 \mathrm{~mL})+(8.20 \% \times 135 \mathrm{~mL})] \mathrm{g} \text { sucrose }}{(225+135) \mathrm{g} \text { solution }} \times 100 \%=6.98 \%$
3. $40.0 \mathrm{~mL} / 115 \mathrm{~mL} \times 100 \%=34.8 \%$
4.
$\frac{0.00152 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{Na}^{+}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}} \mathrm{x}$
$\frac{22.9898 \mathrm{~g}}{\operatorname{mol~Na}} \times \frac{1000 \mathrm{mg}}{\mathrm{g}}=69.9 \mathrm{mg} / \mathrm{L}$ or ppm

$$
\text { 5. } \frac{225 \mathrm{mg} \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \text { glucose }}{180.158 \mathrm{~g}}}{5.00 \mathrm{~mL} \frac{0.789 \mathrm{~g}}{\mathrm{~mL}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}}=0.317 \mathrm{~m}
$$

$\frac{1 \mathrm{~kg} \text { water }}{1.65 \mathrm{~mol}} \mathrm{x} \frac{1 \text { mol urea }}{60.055 \mathrm{~g}} \times 25.0 \mathrm{~g}$ urea x 1.65 mol urea 60.055 g
6.
$\frac{1000 \mathrm{~g}}{\mathrm{~kg}} \times \frac{1 \mathrm{~mL}}{0.998 \mathrm{~g}}=253 \mathrm{~mL}$ water
7. $5.00 \mathrm{~kg} \mathrm{x} 8.00 \%=400 . \mathrm{g} \mathrm{NaCl}$, so dissolve $400 . \mathrm{g} \mathrm{NaCl}$ in 4.60 kg of water to make solution
8. 4.12 g solute $/ 104.12 \mathrm{~g}$ solution $\mathrm{x} 100 \%=3.96 \%$
9. $\frac{10.00 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mL}}{0.789 \mathrm{~g}}}{1.55 \mathrm{~L} \times \frac{1000 \mathrm{~mL}}{\mathrm{~L}}} \times 100 \%=0.818 \%$
10. $\frac{0.10 \mathrm{~g} \text { glucose }}{100 \mathrm{~g} \text { blood }} \times \frac{1 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1000 \mathrm{mg}}{\mathrm{g}} \times \frac{100 \mathrm{~mL}}{\mathrm{dL}}=1.0 \times 10^{2} \mathrm{mg} / \mathrm{dL}$
11. $\frac{0.0035 \mathrm{~g} \mathrm{NaCl}}{100 \mathrm{~g} \text { solution }} \times \frac{1 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{\mathrm{~L}} \times \frac{1000 \mathrm{mg}}{\mathrm{g}}=35 \mathrm{mg} / \mathrm{L}$ or ppm
12. $\frac{2.4 \mathrm{mg} \mathrm{F}^{-}}{\mathrm{L}} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~mol} \mathrm{~F}^{-}}{18.9984 \mathrm{~g}}=1.3 \times 10^{-4} \mathrm{M} \mathrm{F}^{-}$
$125 \mathrm{~mL} \frac{0.791 \mathrm{~g}}{\mathrm{~mL}} \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{32.042 \mathrm{~g}}$

